The maize genome contains a helitron insertion.

نویسندگان

  • Shailesh K Lal
  • Michael J Giroux
  • Volker Brendel
  • C Eduardo Vallejos
  • L Curtis Hannah
چکیده

The maize mutation sh2-7527 was isolated in a conventional maize breeding program in the 1970s. Although the mutant contains foreign sequences within the gene, the mutation is not attributable to an interchromosomal exchange or to a chromosomal inversion. Hence, the mutation was caused by an insertion. Sequences at the two Sh2 borders have not been scrambled or mutated, suggesting that the insertion is not caused by a catastrophic reshuffling of the maize genome. The insertion is large, at least 12 kb, and is highly repetitive in maize. As judged by hybridization, sorghum contains only one or a few copies of the element, whereas no hybridization was seen to the Arabidopsis genome. The insertion acts from a distance to alter the splicing of the sh2 pre-mRNA. Three distinct intron-bearing maize genes were found in the insertion. Of most significance, the insertion bears striking similarity to the recently described DNA helicase-bearing transposable elements termed HELITRONS: Like Helitrons, the inserted sequence of sh2-7527 is large, lacks terminal repeats, does not duplicate host sequences, and was inserted between a host dinucleotide AT. Like Helitrons, the maize element contains 5' TC and 3' CTRR termini as well as two short palindromic sequences near the 3' terminus that potentially can form a 20-bp hairpin. Although the maize element lacks sequence information for a DNA helicase, it does contain four exons with similarity to a plant DEAD box RNA helicase. A second Helitron insertion was found in the maize genomic database. These data strongly suggest an active Helitron in the present-day maize genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The polychromatic Helitron landscape of the maize genome.

Maize Helitron transposons are intriguing because of their notable ability to capture gene fragments and move them around the genome. To document more extensively their variability and their contribution to the remarkable genome structure variation of present-day maize, we have analyzed their composition, copy number, timing of insertion, and chromosomal distribution. First, we searched 2.4 Gb ...

متن کامل

Distribution, diversity, evolution, and survival of Helitrons in the maize genome.

Homology and structure-based approaches were used to identify Helitrons in the genome of maize inbred B73. A total of 1,930 intact Helitrons from eight families (62 subfamilies) and >20,000 Helitron fragments were identified, accounting for approximately 2.2% of the B73 genome. Transposition of at least one of these families is ongoing, but the most prominent burst of amplification activity was...

متن کامل

Helitrons contribute to the lack of gene colinearity observed in modern maize inbreds.

U ntil recently, it was assumed that the order of gene sequences within modern maize would be virtually invariant. Recent discoveries have shown that gene colinearity is not always the case. Several laboratories (1–3) have found DNA regions rich in gene sequences that are present in some maize inbred lines but absent at homologous sites in other lines. This variation, termed ‘‘intraspecific vio...

متن کامل

Helitrons: Their Impact on Maize Genome Evolution and Diversity

Gene movement by the newly-described Helitron family of transposable elements apparently has significantly impacted the evolution of this genome and has contributed to the lack of intra-specific gene collinearity between different maize inbred lines. The abundance of these elements and the extent of diversity among them remain largely undetermined. Several hypotheses have been proposed to expla...

متن کامل

HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes.

Transposons make up the bulk of eukaryotic genomes, but are difficult to annotate because they evolve rapidly. Most of the unannotated portion of sequenced genomes is probably made up of various divergent transposons that have yet to be categorized. Helitrons are unusual rolling circle eukaryotic transposons that often capture gene sequences, making them of considerable evolutionary importance....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2003